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A B S T R A C T  

An example is given of division algebras D1 and D2 of odd prime degree 
p over a field K such that D1 and D2 have no common subfield properly 
containing F, but D~ / ®/<D2 is not a division algebra for 1 < i < p - I. 

Let K be a field, and let D1 and D2 be division algebras with center K and 

finite-dimensional over K.  If Dt and D2 each contain isomorphic copies of some 

field L D K,  then D1 ®KD2 is not a division algebra, since its subring L ®g  L has 

zero divisors. If D1 and D2 are both quaternion algebras over K,  then Albert 

[A] proved a converse: if D1 ® h.D2 is not a division algebra, then there is a 

common subfield of D1 and D2. After Albert 's  theorem was proved the question 

arose whether there is an analogous result for algebras of higher degree. There 

was no particular reason to expect a generalization of Albert 's  result, but the 

question was unsettled for many years. A negative answer was given in [TW, 

Prop. 5.1] where an example was constructed for each odd integer n of D1 and 

D2 each of degree n, such that  D1 ® I¢D2 was not a division algebra, but DI 

and D2 had no common subfields. This was quickly deflated by D. Saltman, 

who pointed out that even though DI ®KD2 is not a division algebra in these 
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examples, D1 ® KD~ p is a division algebra, where D~ p is the opposite algebra 

of D2. So, since D2 and D:  p have the same subfields, there can be no common 

subfields of DI and D2. Saltman pointed out that a more reasonable question is: 

If D~ i ®KD2 is not a division algebra for 1 < i < exp(Dl ), must D1 and D2 have 

a common subfield properly containing K? (Here D~ i is tile underlying division 

algebra of D1 ®KD1 ®K""  ®K D1 (i times) and exp(D1) is tile order of tile class 

of D1 in the Braner group of K.)  

Counterexamples to this question have remained rather elusive. Mammone [M] 

recently produced a counterexample where D1 has degree n and D2 has degree 

n 2 for any integer n > 1. But the question is most tantalizing when D1 and D2 

axe required to have prime degree p. Note that in this case the hypothesis that 

D~ i ® KD2 not be a division algebra for 1 < i < p is actually symmetric in D1 

and D2 since it is equivalent to the Schur index condition: ind(D~ ~ ®h.D~ j) < p2 

for all i, j .  In this paper we settle this case by giving a counterexample for every 

odd prime p. 

Our construction will make use of valuation theory on fields and on division 

algebras. We will use the following notation: if E is a field or a division algebra, 

F is an ordered abelian group, and v: E* ~ F is a valuation, we will write V E for 

the valuation ring of v on E, M E for the unique maximal ideal of V E , E for the 

residue division algebra VE/ME, and F s for the value group ira(v). If a E V E , 

we write ~ for the image of a in E.  We use the same letter v for an extension 

of v to a field or division algebra E '  containing E - - i n  the cases considered here, 

v will have only one extension to E' .  All the conmmtative valuation theory we 

need is covered, e.g., in [E], while tile noncomnmtative valuation theory needed 

can be found in [JW]. 

Now fix some prime number p. Our ground field F will always be assumed to 

contain a primitive p-th root of unity w. For any a,b E F* = F - {0}, we write 

(a, b;F)v for the p2-dimensional symbol algebra over F with generators i , j  and 

relations, iv = a, jP = b, ij = wji. (The choice of w is fixed throughout.) For 

a E F*, we write NF(a ) for tile image of tile norm map, NF(¢/Z)/F(F(ecc~)*). 

Our counterexample will consist of two division algebras over the Laurent series 

field F((X)).  

THEOREM 1: Let a,c,d e F* with a,c ~ F v and F( Cf'a) # F( ¢¢~), and let 

K = F((X)).  Let D~ = (a ,X  ;K)p mad D~ = (c, dX;K)p .  Then D~ mad D2 are 

division Mgebras of degree p, and 
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(i) for 1 < i < p - 1, D~ i ®KD2 is not a division algebra i f f ( c , d ; F (  ~ c ) ) p  

is not a division algebra; 

(ii) D~ and D2 have no common subfield strictly containing Ix" iff d ¢ NF(a ) • 

Nv(e). 

Proof: (i) The canonical discrete valuation v: K* ---, Z (with valuation ring 

F[[X]]) is complete, so Henselian; hence, this valuation extends uniquely to each 

division algebra finite-dimensional over K. Now, D1 and D2 are division algebras 

by [JW, Ex. 4.3] since [F( ~v/'J): F] = [F( Pv~): F] = p and v(X)  = v(dX) = 1, 

which has order p in F~c/pr K. (This can also be seen by an easy norm calculation, 

or by viewing the Di as twisted Laurent power series rings.) From the bilinear- 

ity of symbol algebras we have the Brauer group equivalences D@I i ® h.D2 ,~ 

(a i, X ; K)p ® K(c, d X  ; K)p ,'., N ® KI, where N = (aic, X ; K)p and I is the un- 

derlying division algebra of (c, d; g)p.  Now, as F(C/J) ¢ F(~,'~), N is a division 

algebra for the same reason as D1 mad D2, and with respect to the extension of v 

to N, N is "nicely semiramified" in the terminology of [JW, §43; in particular, its 

residue division algebra N- is the field F(  P ax/~c). Also, since c and d are valuation 

units, I is inertial over K mad 7 is the underlying division algebra of (c, d ; F)v 

(cf. [JW, Ex. 2.4(i), Prop. 2.5]). By the SclnLr index formula in [JW, Th. 5.15(a)], 

ind(N ® g I) = ind(N) • ind(N ®~- I)  = p.  ind(c, d ; F(  P aV~c)) v. 

Thus, D~i®~:D2 is not a division algebra iff ind(g®h.I  ) < p2 iff (c, d; F(  ' av/-aT~c))v 

is split, proving (i). 

(ii) Consider the subfields L of D1 with L D K. If L is unranfified over K,  

then [L: F] = [L: F] > 1 and Z C_ ~ = F(~v/'J). Hence, Z = F(~/-J). On the 
= 1- Z other hand, if L is ramified over K,  then F L = I 'D ,  P , so L = K(~'-u--X) for 

some u E K* with v(u) = O. (Recall that a tame emd totally ramified extension 

of a Henselian valued field is always a radical extension, cf. [S, p. 64, Th. 3].) If 

= e e K = F,  then e - u mod K *v (as 1 + M K C K*p since v is Henselian). 

So, L = K (~ / ~X' ) .  To see what possible e may occur, note that L splits D1, so 

that L ,~ D~ ®K L ..~ ( a , X  ;L)v '~' (a,e -~ ;L)v, since X = e -~ mod L *p. Now, 

L is a totally ramified extension of K,  so L = K = F. Since a, e are valuation 

units of L, the underlying division algebra of (a, e -1 ; L)v is inertial with residue 

division algebra similar to (a, e - l ;L )p .  Thus, as L splits D1, (a, e -1;F)p  must 

be split, so e • Nf (a  ). Conversely, if e • Nf(a) ,  then K ( ~ - X )  splits O1 

since (a, X ; g )p  "~ (a, eX ; g )v .  The subfields of D2 are obtained by a similar 
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calculation: An unramified subfield of D2 has residue F(¢/~). Also, since for 

e • F*, D2 ®a-K(Yqt~'X) ~ (c, de -~ ;K(~/'e--X))p, the totally ramified subfields 

of D2 are those K(~e'-X) with (c, de -~ ;F)p split, i.e., de -~ • NF(C ). Thus, 

D1 and Du have no common subfield unranfified over K since we have assumed 

F($¢rff) # F ( ~ ) .  But D, and D2 have a common subfield ramified over K iff 

there is an e • NF(a ) with de -1 • NF(c ). This is equivalent to: d • NF(a).NF(C ). 
| 

Remarks: (1) If p = 2, then an easy calculation shows that if (c,d; F(v/~))2 
is split then d • Nv(a ) • Nf(c ). So, Theorem 1 does not conflict with Albert's 

result. However, for any odd prime p, we will give an example of a field F and 

elements a, c, d • F satisfying the conditions in both (i) and (ii) of the Theorem. 

Thus, the corresponding Dl and D2 over K = F((X)) satisfy D~ / ®KD~ is not 

a division algebra for 1 < i < p - 1 but D1 and D~ have no common subfield 

properly containing K. 

(2) The conditions of the Theorem are preserved under 1)rime-to-p extensions. 

That is, if we have F and a, c, d • F* as specified in Theorem 1 such that the 

conditions in (i) and (ii) both hold and if E is any finite degree extension of K 

with p { [E: g ] ,  then for D I = Di @ h.E, (a) D~ and 9 5 are division algebras 

of degree p, (b) each ~lD'®i ® ED2 is not a division algebra, and (c) D~ and D~ 

have no common subfields. Assertions (a) mad (b) follow from the corresponding 

properties for D1 and D2, as p ~ [E: K]. We obtain (c) by the same argument as 

for Th. 1 (ii), since the valuation v on K has a unique extension to a valuation 

on E, with [E: K] liE: FKI = [Z: g] .  Since p ~ [E: f ]  we find E(pvra) # E(~v/-c) 

and d ¢ NE---(a ) • N-K(c ). Because p ~ liE: FK[ , the image of X is a generator of 

FE/PF E. So, the argument goes through. 

Example 2: Let p be any odd prime number and let F0 be the completion of the 

rational function field Q(T) with respect to the discrete valuation which is the 

localization of Z[T] with respect to its minimal prime ideal pZ[T]. So, there is a 

complete discrete valuation v: F~ ~ 7/. with residue field F0 = Fp(t) where t, the 

image of T, is transcendental over Fp = Z/pZ, and v(p) = 1. Let F~ = Fo(w), 

where w is a primitive p-th root of unity. F1 is a totally ramified extension of F0 

with [FI: F0] = p -  1 (since Q(w) is a totally ramified extension of Q with respect 

to the p-adic valuation, cf. [W, p. 262]). Let F be any finite degree extension of 

F~ such that F is totally ramified over F~ with respect to v, [F: F~] > 3/(p - 2), 
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and p ~ [F: F~]. (So, for p _> 5 we can take F = Ft ,  while for p = 3 we can take 

F = FI(¢/ '~'),  where r l  is a uniformizing parameter for VF~ .) For the extension 

of v to F we have 
1 

F = F0 = Fp(t) and F f = ~Z,  

where k = IF: F,](p- 1) > 3(p - 1)/(p - 2), and v(p) = 1 ¢ pr F since p { k. Now 

choose 8 E F* such that 

1 
(1) p - l v ( p ) < v ( 8 ) < v ( P )  and v(6) ~ pPf . 

For example, we could take 9 = ~r t, where ~r is a uniformizing parameter for V F 

and k / ( p -  1) < l < k with p~/ .  Such an l exists since 

k 
k - - - > 3 ,  

p - l -  

so there axe at least two successive integers strictly between k / ( p -  1) and k. Let 

(2) a = T, c = l + T, and d = l + O. 

Since t, 1 + t ~ Fp(ff) = F*,  certainly a, c ~ F p. Likewise, since ai'-"~ = ti(1 + t) q~ 

~P, we have a~c ~ FP for all i, so F('vr~) # F(t /~)  by Kummer theory. Lemmas 

3 and 5 below will show that the a, c, d in (2) satisfy the conditions (i) and (ii) 

of Theorem 1. 

LEMMA 3: With F,a,c ,d,  as in Example 2, (c ,d ;F(  ~ ;~ ) )p  is split for 1 < i < 

p - 1 .  

Proof'. We work for a moment in the subfeld F0 of F defined above, which has 

p for a uniformizing parameter. Let r = ~ = ~/Ti(1 + T) mad let E = Fo(r). 

With respect to the extension of v to E,  r is a valuation unit with residue 

= ~ .  So, E has no ramification over F0, and 

E ~ r0(~) = Fp(t)( ¢ / ~ f  + t)). 

But since ~ ~ Fp(t), Fp(t) ~ Fp(t)((/W(-f+t)) c Fp(~//). Since 

[Fp('v/'/): Fp(t)] = p, we have Fp(¢/'/) = Fp( t ) ( ( / tT ( i+ t ) )  C 2 .  In paxticu- 

lax, 1 ~  e E.  Thus, there is a valuation unit a of E with ~P = 1 + t. That  

is, 

a p -- 1 + T (mod PVE); 
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hence, 1 + T = aP(1 -}-pz) for some z • VE, where a • E C F(  P ax/~-~c). Thus, the 

identities for symbol algebras [D, pp. 79-82] yield 

(3) 
(c, d; F(~aic))v = ( l + T , l + O ; F ( ~ a ' c ) ) p  

= (~,(1 +pz) , l  +0 ;F(~  ~v~))~ 

~ (1 + pz, 1 + 0 ; F ( ~ ) ) ,  OFt ,¢~) (--0, 1 + 0; F( ~ aV~)), 

,,~ (-O(1 -{- pz), 1 + O;F( ~aic))p 

= (1 - @z,(1 + 0)0-1(1 + pz)-' ; f (  ~ ~ v ~ ) ) , .  

(For the last step we used the identity ( r , s ;L)p  ~- (7" + s , - s / r ; L ) v ,  cf. [D, 

Lemma 11, p. 82].) However, 1 4- m e F(  P ax/r~-~c) p whenever v(m) > p-~_lv(p) as 

- 2 - -  v v on F(  ~ ax/~-~c) is complete discrete, so nenselian. (For, if v(m) > p-1 (P) write 

m = u • lr v(m)/v(~) with v(u) = 0 and 7r a uniformizing parameter of VF(~a.c) ; 

then 

h(X)  = ~-"(~/~¢~)[(1 + ~[~")-~(P~]/~(")X) ~ - 1] - u • Vv( ~ [ X ]  

has a root r in VF(~,~) by Hensel's Lemnm since the image of h in F(  ~ a~c) [X]  is 

p~r-~'(P)D'('OX-~. Then, (1 + ~r[V('O-~(v)]/"(~)r) p = 1 + m.) Since we assumed in 

(1) that v(0) > ~ v(p), we have v(-Opz) > p-~-y_lv(p). Thus, 1-Opz E F(  "P "/=~-='v v a'c) , 

so (3) shows that (c, d;F(  ~aiC))p is split. | 

The following lemma is well-known, but we include a proof for lack of a con- 

venient reference. 

LEMMA 4: Let E = Q(X0,. .  • ,  Xp-1, Y)  where X 0 , . . . ,  Xp-1, Y are independen~ 

indeterminates overQ and p is prime, let w be a prinfitive p-th root of  unity, and 

let L = E(Z)  where Z ,  = y .  Set 

p--I (p--1 I 
/ ( X o , . . .  , x , _ , , z )  = H / ~ x ~ ( ~ ' z ) '  • L(~). 

i=0 \ i=0 / 

Then, 

yP Vp-1 f ( X o , . . .  , x p _ , , z )  = x~o + x ~ r  + . . .  + . . , _ l _  + p g ( X o , . . .  , X , _ l , r )  , 

where g ( X o , . . . ,  Xp_,, Y) E Z[X0 , . . . ,  Xp_,,  r].  

(E'-' ) Proof: Let ~ : f ( X o , . . .  , Xp- l ,  Z); clearly ~ is the norm NL/E j=O XJ Zj  • 
la--1 So, as ~'~j=o x j z J  is integral over Z[Xo,. . .  , Xp- l ,  Y] which is integrally closed, 



Vol. 83, 1993 DIVISION ALGEBRAS 359 

E Z [ X 0 , . . . ,  Xp_, ,  Y]. Let R = Z[w], which is integral over Z, and let M be a 

maximal ideal of R with M f3 Z = pZ. Since the image of w in R / M  equals 1 as 

• . .  , is ( E ~ - ~  XJ Zj ~ p char(R/M) = p, the image of ~0 in R/M[Xo,  Xp_I ,Z]  \ = ] = 
p--1 ~-,j=o X~ Y j" Hence, 

p-1 
- Zx;r  

j=O 

ker (7.[X0, . . . ,  X p - , ,  Y] ~ R / M [ X o , . . . ,  X p - , ,  Z]) 

pZ[Xo , . . .  , X p - l ,  Y], 

as desired. | 

LEMMA 5: With F ,a ,c ,d  as in Exeanple 2, d q~ NF(a ) • NF(C ). 

Proof: Let L1 = F(~ /T)  and L2 = F ( ~ / I + T ) ;  since t, 1 + t  q~ Fp(t)P, the 

unique extension of v to each Li has ramification index 1 with L1 = F(Pv~) = 

F( I~T- '~ )  = L-~-. Since the valuation extends uniquely, we have v(NL,/F(7))  = 

pv(7) for all 7 E L*. Let Vi = VL~, the valuation ring of v on Li, and let 

9" = ~ 6 V,. Because [L,: F] = [L,: F] with L-T= F(Y), V, is a f r ee  V F- 

module with base {1,r, r2 , . . .  ,7-p-l} (cf. [E, Th. 18.6]). For any a E V1, write 
p--1 a = Y]j=0 s j r J  with sj E V F. Then, with f the norm polynomial of Lemma 4, 

we have 

NLa/F(VO = / ( , s o , . . . ,  ,sp-1,7") 

(4) = sPo + s~T + . . .  + s~_,T p- '  + Pg(,so,.. .  , 3p_,, T) 

.p  ,'pp-1 ( rood  PVv). - s~ + s ~ T + . . .  + ~ p _ l -  

~P - o'P (mod pVf )  , it follows from (4) that for may a,  a '  e V~, Since (,si + ,s~)P - ~i "1- °i 

(5) NL, /F(a  + a') = NL, /F(a)  + NL, /F(a ' )  (rood PVF) . 

Because the norm is always multiplicative, (5) shows that NL~/F induces a ring 

homomorphism V1 ~ VF/PVF; let R be the image of this map in VF/PV F. 

Turning now to V2, and setting a = (1 + T) 1/p, we have likewise that V2 is 

a free Vf-module with base { 1, a , . . . ,  a p-1 }. Lemma 4 shows that for fl = 

~_,~-1 o rjaJ e V2 (so each rj e Vf) ,  

(6) NL:/F(fl) = r0 p -4- r~(1 + T) + . . .  + ,'~_,(1 -4- T) p - '  (rood pVF) .  
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By expanding out the powers of 1 + T in (6) and invoking the additivity of p-th 

powers rood p, we see from (4) that NL,/F(V2) maps into R in V r / p V  f .  

Now, suppose 1+0  = NL, /F(a) .NL, /F(~  ) for some a E L~,/3 E L~. Then, 0 = 

v(1 + 0) = pv(a)  + pv(//), so v(~) = -v (a ) .  Thus, after replacing a by r - l a  

and /3 by r~  where r E F* with v(r) -- v(a) E FL~ = F F, we may assume 

v(a) = v(~) = 0. So, 1 + 0 maps into the subring R of VF/PVF; hence 0 also 

maps into R. That  is, there is 3' E V1 and e E V r with NL~/F('Y) = 8 + pe. 

But this cannot occur since v(NL,/F(7)) = pv(7) E pFL, = pFF, while since 

v(O) < v(p) by (1), v(O + pe) = v(O) ~ pFf, again by (1). This contradiction 

shows d = 1 + 0 ¢ Nr(a ) • NF(C), as desired. | 
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